Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

| DA — Interactive Disassembler

Chapter 1 - Preparations

Part O — Introduction...........ooiiiiiiiii i, Page 3
Part 1 —Installing IDA.......ooii e, Page 4
Part 2 — Getting the Plugins and Addons....................oooiii Page 4
Part 3 — Installing the Plugins and Addons.......................oooini. Page 5
Part 4 — Changing the Auto Comments...............ccooeeiiiinininnnn.... Page 7
Part 5 —Config Files........ooiiiiiii Page 7

Chapter 2 — First Approach

Part 6 — Our First Approach..............coooiiiiiiiiii i, Page 8

Part 7 — The Main Window.............coooiiiiiiiiiiiii e, Page 11
Part 8 — Accessing the Plugins. ..o, Page 13
Part 9 — The Options Dialog..........ccoviiiiiiiiiii e, Page 14

Chapter 3 — The different Windows

Part 10 — HeXVIBWttt eaeens Page 20
Part 11 — Function Window............oooiiiiiiiiiii i, Page 21
Part 12 — Names Window..........coooiiiiiiiiiiiiiiiii e, Page 22
Part 13 — Strings References...............oooiiiiiiiiiiiiiii, Page 23
Part 14 — Imports......ooovniii i e Page 24
Part 15 — EXPOTTS. ..o Page 25
Part 16 — Cross-references...........c.ooeviiiiiiiiiiiiii i, Page 26
Part 17 — Function Calls............oooiiiii e Page 27

Chapter 4 — Navigating through the Code

Part 18 — Arrows in front of the Code................coocoiiiiiiiiiin, Page 28
Part 19 — Following Jumps........c.ccoviiiiiiiiiiiii e Page 29
Part 20 — Using the Forward/Backward Arrows........................... Page 30
Part 21 — Using Cross References.............oooevviiiiiiiiiiiiiiinnn.... Page 30
Part 22 — The Jump Menu..........cooiiiiiiiiiii e, Page 31

Page 1 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

Chapter 5 - Making the Code more readable

Part 23 — Adding Comments............ooeviiiiiiniiiiieiieiieaeanns Page 33
Part 24 — Adding Lines.........ooouiiiiiiiiii e Page 34
Part 25 — Renaming Functions, Locations and more..................... Page 35

Page 2 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!
Chapter 1 — Preparations

Part O — Introduction

Hi everyone,

This is my first tutorial and the first lesson so please don’t be rude. Due to the
fact that English is not my native language there may be errors. Feel free to
contact me so that I can correct them.

Some people may ask why I have written this tutorial since everyone who is into
cracking knows how to deal with IDA and newbies normally use W32DASM,
changing later when they are advanced. [am trying a different approach. It’s
2003 now. W32DASM has lots of mistakes and is less powerful than IDA. 1
decided to make this tutorial for newbies as a First Approach to IDA so that
their first tool is a powerful and helpful one for learning how to crack programs.
IDA offers Auto Comments so the Assembler language isn’t as cryptic for
newbies.

Of course, it is useful to have an Assembler Book as a reference but some things
may become clearer by just viewing the comments that may be advanced. 1
won’t expect any Assembler knowledge in this tutorial and Assembler will be
addressed in my second tutorial. I want this tutorial to cover the most used
functions in IDA. It will not be complete and won’t replace the help file from
IDA. Make sure to read the help file if you run into problems.

I will try to explain a lot of things with screenshots but don’t expect a graphical
step-by-step walkthrough for every case. I set goal of one week to complete this
tutorial because in one week | promised my first lesson.

2 Paragraphs were delete due to

internal group infos and nicks
from group members

InAbQOo|
Page 3 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

Part 1 — Installing IDA

Installing IDA 1is very simple because it doesn’t really need any installation. Just
extract all the files from the release you have to your favorite folder and make
sure to extract the subdirectories properly.

e.g. C:\Program Files\Datarescue\I DA PRO Advanced 4.30\

In thistutoria | will use IDA PRO Advanced 4.30

Part 2 — Getting the Plugins and Addons

Ok, so far so good. There are some nice Plugins and Addons out in the web. The
ones | mention here are very useful and | am sure you will need them often.
Some will be useful when you try to crack harder programs.

LoadINT 4.21 = For changing the AutoComments displayed in IDA

Flair Tools 4.16 — For creating your own signatures

SIE Plugin — Adds Windows for Strings, Imports, Exports to IDA

Ida2Softice — Creates NMS files of your current Database which
make Debugging your apps easier

Ida 4.3 SDK - Gives you the possibility to write your own Plugins

Get them at the following URLS:

http://mostek.subcultural.com
http://wasm.ru/toollist.php?list=13

Notice: In case the URLS are down, don’t ask the people mentioned in the
Introduction or me to send you one of these files. We don’t spread Warez
and Files so don’t even try. Use www.google.com or your favorite search
engine to find the files.

Page 4 of 36

http://mostek.subcultural.com
http://wasm.ru/toollist.php?list=13
http://www.google.com

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

Part 3 — Installing the Plugins and Addons

Loadint 4.21:

Extract all filesto your main IDA folder. Make sure to rename the README
file from the LoadInt 4.21 package to something else for further usage.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\

Flair Tools 4.16:

Create a sub directory in your IDA folder and extract al filesincluding
subdirectories to that folder.
e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\Flair Tools

Ida Pro SDK 4.30:

Create a subdirectory in your IDA folder and extract al filesincluding
subdirectories to that folder.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\Ida SDK 4.3

SIE Plugin:

Extract the files to a temporary directory and copy the file plugs.plw to your
IDA plugin directory.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\Plugins
Make sure to copy the correct file concerning your version of IDA to your
Plugin folder. For example, if you use IDA PRO Advanced 4.30 use the

plugs.plw from the following folder:

e.g. C:\tempdirectory\4.30\plugs.plw

Page 5 of 36

http://e.g.c:\tempdirectory\4.30

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

SIE Plugin (continued):

Now you need to edit the file plugins.cfg in your IDA Plugins folder.
e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\Plugins\Plugins.cfg

Y ou need to add the following lines at the end of the file:

Strings BugFix plugs 0 3
Exports plugs SHIFT-E 2
Imports plugs SHIFT-I 1
Strings plugs SHIFT-S O

Save the file afterwards and del ete the temporary folder. See the explanationsin
the file Plugins.cfg for further details.

| da2Softice Plugin:

Extract the files to atemporary directory and copy the file i2s.plw to your IDA
Plugin directory.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced\4.30\Plugins

Make sure to copy the correct file concerning your version of IDA to your
Plugin folder. For example if you use IDA PRO Advanced 4.30 use the i2s.plw
from the following folder:

e.g. C:\tempdirectory\4.30\i 2s.plw

Now you need to edit the file plugins.cfg in your IDA Plugins folder.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced\Plugins.cfg

Y ou need to add the following lines at the end of the file:

12S_Setup 12s 0 3
12S_Source Info 12s Ctrl-F12 2
12S Save NMS 12s Shift-F12 1
I12S_Conversion 12s F12 0

Save the file afterwards and delete the temporary folder. See the explanationsin
the file Plugins.cfg for further details.

Page 6 of 36

http://e.g.c:\tempdirectory\4.30

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

Part 4 — Changing the Autocomments

If you haveinstalled LoadINT 4.21 there will be afile PC.CMT in your IDA
main folder. Use your favorite editor to change and advance the comments for
the Assembler command to your needs. Also, take a good Assembler book and
advance the comments to your liking. However, thisisjust a hint that might be
helpful as you start to use Assembler.

Thisiswhat you need to do so that IDA shows your changed Autocomments.

1. Edit the PC.CMT with your favorite editor and save it
2. Call the File COMPILE.BAT from the IDA main folder

For further details take alook at the Readme file included with LoadINT 4.21.
Make sure that IDA is not running when running COMPILE.BAT or the file will
produce an error even if the syntax of the CMT filesis correct. That is because
the program tries to write to the file IDA.INT and if IDA isrunning, the fileis
open and can’t write to it.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\PC.CMT
e.g. C:\Program Files\Datarescue\I DA PRO Advanced 4.30\Compile.bat
e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\README

Part 5 — Config Files

It is very useful to know the configuration files because IDA doesn’t save the
options you set. After reading the following chapters you might want to make
some changes. I won’t give you details about the configuration files. In fact,
they are very well commented and it should be an easy task to change them to
your needs, for example adding Macros, changing Hotkeys or just changing the
display.

Here are the locations and names of the configuration files:

e.g. C:\Program Files\Datarescue\IDA PRO Advanced\IDA.CFG

e.g. C:\Program Files\Datarescue\I DA PRO Advanced\IDAGUI.CFG

e.g. C:\Program Files\Datarescue\IDA PRO Advanced\IDATUI.CFG

e.g. C:\Program Files\Datarescue\I DA PRO Advanced\S G\Autoload.cfg
e.g. C:\Program Files\Datarescue\IDA PRO Advanced\Plugins\Plugins.cfg
e.g. C:\Program Files\Datarescue\IDA PRO Advanced\IDSIDSNAMES

There are more but they are for different processor modules that we won’t need
here.

Page 7 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

Chapter 2 — First Approach

Part 6 — Our First Approach

After showing you many things and doing a lot of preparations, it istime to start
IDA and take a first look at the program. There are alot of executable files.
Which isthe correct one?

IDA2.EXE Thisfile is used when you run OS/2

IDAX.EXE Thisfile is used when you run DOS and want to run it with
DOS/4GW Extension in Protected Mode

IDAW.EXE Thisfileisused for normal DOS Mode

IDAG.EXE Thisfile is used when you use Win95 or above and features a
nice Graphical User Interface

In this tutorial I will only handle the GUI version of IDA because it’s the most
used version.

Start IDAG.EXE and press “OK” when the License Dialog is shown.

Now you should see a Dialog that gives you three choices:

Welcome to IDA!

Dizazzemble a new file

Go “wfark an pour awn

Frevious Load the old disazzembly

[Don't display this dialog box again

1. New (Disassemble a new File)
2. Go (Work on your own. This will start IDA without disassembling a file)
3. Previous (Load a previously disassembled file)

If you select “Don’t display this dialog box again” you will automatically start

in the 2™ mode the next time. In case the dialog box is still shown at the start of
the program check the configuration files and make a setting there.

Page 8 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

This is your first start now so choose “New”. Next there is a File Dialog where
you can select the file you wish to disassemble. I suggest you choose
IDAG.EXE in our IDA main folder and press “OK” afterwards.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\IDAG.EXE

Now IDA prompts with another Dialog that looks like the following:

x

Load file C:AIDAPRO43hdag, exe az

E LIpe
FS5-005 executable [EXE] [dos. dw]
Binary file

Processar lype

Intel 30=86 proceszsors; metapo j Set
Analyzi
Loading seqrment IEI:-:I:IEIEIEI'I 0oo [#| Enabled
Loading offset | 0x00000000 W Indicator enabled

—Optiok
[| Create segments
[~ Load resources
v Rename DLL entries
[~ Manualload F.ernel optionz2
[T Eillsegment gaps
[+ Make imports seqrment
[T Dont align segments

k.emel options]

Processar optiohs

Spstern DLL directone | C:MWINMT

k. Cancel Help

In this dialog we can tell IDA what we know about our file. Most Windows files
are so-called PE files. It 1s a defined format of how the files look. So in 99% of
all cases this is the correct choice.

For Processor type we keep the setting :
Intel 80x86 processors: metapc.

Page 9 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

This means IDA triesto use all possible Assembler commands even the Intel
specific ones and MM X instruction set to show us our code. There are more |
haven’t mentioned but this setting is the most useful. If you know exactly for
which CPU the program was written, here is where you can change the
processor the program was written for. Also, here we keep metapc in 99% of all
cases.

After knowing how to handle IDA you may take alook at the Kernel Options
and Processor Options to do some fine-tuning but for now just keep the standard
settings and press “OK”.

Now IDA should start working. After displaying some messages and building up
the screen, you are able to take a first look at your disassembled code
(Deadlisting). The first thing we do now is arranging the Toolbar and moving
the Overview Navigation Window to the Toolbars. Next, increase the window
size of “IDA View A” to maximum. Now our program should look like the
following:

_ioix
2| Ale Edit Jump Search wiew Options Windows Help a0l
Imn|ll--lllwﬁulﬂllllm =l R R EERGE R EE T e

“[[Be [swsld=]levlls AAllD8sxur i xnaxlub]ssvrs
B M0 § WK - g|[Fo o] | =[5 |

DA Wigwd, | [&4 Hex Vlewl N Namesl 7 Functlonsl Stnngsl B Structuresl En Enumsl

.text:0084812C0 ; Attributes: bp-based frame il

-text:eeu@12C0

.text:004612C0 ; int _ stdcall WinWMain{HINSTAMCE hInst,HINSTANCE hPreInst,LPSTR lpszCmdLine,int nCmdShow)

.text:B8uE12C8 WinMain proc near ; DATA XREF: .data:@O04EAS44lo

-text:eeu@12C0

.text:804812C0 hinst = dword ptr 8

.text:884812CA hPrelnst = dword ptr @Ch

.text:004812C0 lpszCmdLine = dword ptr 18h

-text:884812CH nCndShow = dword ptr 14h

.text:@gBum12ce

text:B04612C0 push ebp

-text:ae4e12c1 nov ebp, esp

.text:aeum2c3 add esp, BFFFFFFD@h

.text:8084812C6 moyv eax, offset unk_4EAGBS

-text:884812CHE push ebx

.text:884812CC push esi

.text:004812CD push edi

.text:884B812CE call near ptr unk_A4DB744

-text:ea4e12D3 nov vord ptr [ehp 28h], 8

-text:eaue12pe nov edx, dword_SOE1CS

.text:-884B812DF nov eax, [edx]

-text:BauE12E1 call near ptr unk_439FBS

text:B04812E6 nov word ptr [ebp-28h], 14h

.text:0040812EC nou edx, offset off_AEASES

-text:BauE12F1 lea eax, [ebp-8]

text:004612F4 call near ptr unk_4E71CO

.text:004612F9 inc dword ptr [ebp-1ih]

.text:B04812FC nov ed®, [eax]

.text:884812FE moyv ecx, dword_S8E1CB J

A 2]
main() function at 004012C0, named “wWinMain" ;I

FL:D043AGES Do |Disk: 22BME |00000SC0D 004012C0; WinMain

Page 10 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

The yellow small circle (light) at the left of our Toolbar shows us that IDA is
thinking and still working on creating our Deadlisting. There are three possible
colors:

Green : Ready
Yellow: Thinking
Red: Critical

Depending on your CPU, the disassembling may take some time. When the

disassembling is finished, the small circle will turn green and a message saying
“The 1nitial autoanalysis is finished” will be displayed in the status window.

Part 7 — The Main Window

1DA View-2, . Hex Vlewl N Namesl 7] Functlonsl & Structuresl En Enumsl . Shings

text: 80461079 i’
text:00401672] loc_L4B816879: I; CODE XREF: .text:l][lhl]1[|E61j|

:’"“’ text:00481079 mov ecx, BBCh

\ text:0040107E or ecx, BCX

: r--- jtext:po4e1080 jz short locret 4818CF

Pt text:00481082 cmp duTlsIndex, 8

"1 - frextzeouorose jnb short loc_481895

] text:00401088B nov eax, AFEh |

r text:AALA1090) call sub_4@1060

o text: 00401095

' 11 | frextzeount095] loc_ua1095: |; CODE | XREF : .text:auumusorjl

Pt -+ ltext:-8pun1095 mou ecx, BBCh

- text:B040109A push ecx

Pt text:00461098 push 8

' : text:08468189D call GetProcessHeap

V! text:oa4e10A2 push eax

: i text:0046818A3 call HeapAlloc

Vol text:004010A8 or eax, eax

! -l text:ooustmnn jnz short loc_L4B818B6

P text:004810AC moyv eax, OFDh

r text:AA4A10E1 call suh_4a1860

o text:00461 0BG

"1 1 | frext:oouoto8s] Loc_uo1e86: |; CODE | XREF : .text:auunwnnle

1 ¥ Ltext:eoup10B6 push eax

- text: 00401087 push eax

Pt text:004610B8 push duTlsIndex

: : text:004010BE call __ CRTL_TLS_SetUalue

! text:08468168C3 push duTlsIndex

: : text:08468108C9 call __ CRTL_TLS_InitThread LI

1
L ¥ 4] | IO
C__DPdsc__'[System::Real4s]' at DD40D0ZEZ is deleted... =

ame ' _DPdsc__'[sysctem::PDateTime]' at 00400450 5 deleted...

ame 'Oreditor::_16475' at 004D06AFE is deleted...

ame 'unknown_libname_&7l' at 004E6543 s deleted...

bropagating type information...

unction argument information is prupagated

an't rename byte at 0D04FEL188 as '_cls_options_TFoOptions' because this byte can't have a name (it is a tail bytej
! te at 005012C8 as '_cls_welcome_TwWelcomeForm' because this te can't have a name (it is a tail byt
alvsis

is finished.

ol idle Doy |Disk: 22BMEB | |D00006SE 0040103E:

Page 11 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

Here is a short explanation of the shown information:

Red Rectangle:
Like in every other program we see the Menu Bar of IDA

Light Blue Rectangle:
Toolbar to reach most of the options of IDA by clicking on the icon

Pink Rectangle:
Different windows like “IDA View A” (our main view), Hexview, Strings,
Names, Functions, Imports, Exports, Crossreferences and so on

Green Rectangle:
Arrows show where the jumps in the code block lead and are useful to recognize
small loops or to follow a function.

Black Rectangle:
The section name followed by the virtual address: This is the same addresse you
would see in Softice while debugging

Light Yellow Rectangle:
The Code locations can be compared to jump marks. Every location jumped to is
marked like that except the functions themselves.

Grey Rectangle:
The Code of our disassembled program.

Brown Rectangles:

Code References: They show from which points of the program the Code
locations are accessed. When double clicking on them you reach the code where
the location or function is called or jumped to.

Dark Blue Rectangle:
This 1s the Status window that shows our last actions and tells us what IDA 1s
doing at the moment.

Dark Yellow Rectangle:
A small status display that shows if IDA is working at the moment and at which
location it 1s working.

Page 12 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

Orange Rectangle:

The file offset of our current code location: Very useful when you try to patch a
program and want to know the tranglation from virtual address <-> file offset to
find the correct location you want to patch.

Blue Text in Black Rectangle:
Our current code line we are working on.

Part 8 — Accessing the Plugins

In Part 3 of thistutorial | explained how to install plugins for IDA. Now | will
show you how to reach them in IDA.

There are two ways. You can either use the hotkey you defined when adding the
lines to the file plugins.cfg or you can access them manually by going through
the following menus:

e.g. Edit/Pluging/String References
e.g. Edit/Pluging/Imports

e.g. Edit/Pluging/Exports

e.g. Edit/Pluging/lda2Softice

After calling them they will either pop up a new window or a new window is
shown at the Pink Rectangle Area.

Page 13 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

Part 9 — Showing more information and Alignment

To access the Options, select Options/General from the Menu bar and you
should get the following Popup:

IDA Options x|

Disazzembly |.¢‘-.nalysis| Ernss-referencesl Stringsl Colors-1 I EDIDrs-EI Bru:uwserl bisc I

—Address representation———— —Dizplay dizazzembly ine parts—————
[~ Eunction offzets [¥ Line prefises
¥ Include zegment addresses [~ Stack paointer
¥ Usze segment names v Comments
[Repeatable comments
Display dizaszembly lines— [T Auto comments
[v Empty lines [T Bad instruckion <BAD: marks
v Borders between data/code
B azic block boundarnies
E Squrce line numbers Mumnber of opcode bytes Iﬂ

[nztructions indention |1 G Line prefis example; egO00:0FE 4

Commentz indention |4D Low suspiciousness lirik ID:-:EIEI4EI1 non
Right margin I?D High suspiciouznezz limit IEI:-:EIEIE'I.&-.EIEIEI

] Cancel | Help |

Now check the following checkboxes:
Stack pointer, Auto comments, Bad instruction marks, and Basic Block

boundaries

Enter the number “8” at the textfield at “Number of opcode bytes”

Take a look at the 2 textboxes in the bottom left called:
Instruction indention, Comments indention

By increasing these numbers you move these parts to the right. By decreasing
them you move them to left. Play with these values later to arrange your display

and enter these values in your configuration files.

Now switch to the Cross-references window at the top and you should see the
following:

Page 14 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

IDA Options x|

Disassemblyl dnalpsiz Crossreferences I Stringsl Colors-1 I |:III|I:IIS-2I Bru:uwserl bigc: I

—Crozg reference parts———

[+ Display sref values Riight margin

' Display sref tupe mark Cross reference depth 16

v Dizplay function offsets

11

Humber of dizplayed srefs 2
[v Dizplay segments in =refs

Example: CREF: gomefunc+lx2

OF | Help |

The interesting part here is “Number of displayed xrefs”. In Part 7, I gave a
short explanation of Cross-references. IDA normally shows only 2 of them but
suppose a function is called 5 times in our code and we want to check all five
calls to this function. We need to show more than 2. [suggest you set a value
around 200 or so in this box and that should normally show you all Cross-
references of the code. Also, make sure to change this value in the configuration

file.

Page 15 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

In the Menus Color-1 and Color-2 you are able to change all colors as you wish.
I won’t give another explanation for this because it should be very simple.
Instead of the colors we will take a small look at the “Browser” menu. It is also
very useful because it gives us the opportunity to see code by just moving over a
jump or a call without going to this location.

IDA Options X|

Disasseml:ulyl .-i‘-.nalysisl Ernss-referencesl Stringsl Colors-1 I Colors-2 Browser | bizc I

v Auta highlight the current identifier Highlight color |

Mumber of lines for auto scrall |4
Humber of lines for identifiers hintz |'| d

v Pemit to resize the hint by using the mouse wheel

k. Cancel Help

Useful settings here are:

Auto highlight the current identifier : Yes

Number of lines for auto scroll : 4

Number of lines for identifiers hints : 30-40

Permit to resize the hint by using the mouse wheel : yes

That was lots of settings. Now let’s see the effects. Our Window should now
look something like the picture on the following page:

Page 16 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

& 1IDA - idag.exe - [IDA Yiew-A] =1al x|
[Z]Fle Edt Jump Search ¥isw Options Wwindows Help =l
| @[~ ~|[ththit|B 1 [T | ER R EEREE ED T

Ny |EEfred=ler]f 4 EmE x| ew]ED x|e a x[|ut]s & F A &
W -« N x |- - S UK~ g 34 '
DA View-f | Hex\u"\ewl N Namesl ‘iﬂ} Functionsl & Slructuresl En Enumsl R Stringsl

1 @84 BF DE L. BE mou edx, [ebp+uar_ug]

- B84 BFDEY push edx

- B84 BFDES 7F 86 BC 88 call j_ strchr_@ ; Call Procedure

: 8B4 BFDES

: B84 8FDEA Ch 88 add esp, 8 ; Add

: 884 8FDED F8& mov edi, eax

: 884 BF DEF FF test edi, edi ; Logical Compare

: B84 8FDF1 a5 jz short loc 48FDF8 ;5 Jump if Zero (2F=1)
:ABLAFDFA1

: 884 BFDF3 inc edi ; Increment by 1

B84 8FDF 4 47 mov byte ptr [edi-1], @

:ABLAFDFE

:BBLBFDFE loc_H4OFDF8: ; CODE XREF: sub_48FD18+E1Tj
: @84 8FDF 8 FF test edi, edi PR p Trare

- 8B4 BFDFA a8 jnz short loc_A46FEB4 ; Jump if Hot Zero (ZF=8)
- @64 8FDF A

:8848FDFC 43 8 lea eax, [ebx+1] ; Load Effective Address
:ABLAFDFF 6C E3 FF FF call sub_48E178 ; Call Procedure

: B84 8F DFF

- BB48FEBY

AL AFEBL loc_4BFEBL: ;5 CODE XREF: Sul:l_lll]FD1l]+EHTj
: B84 BFE B4 mov dl, [edi]

: B84 BFE BG i H cnp dl, [ebp+arg_%] ; Compare Two Operands

: 804 6FE 09 jnz short loc_46FE66 | ; Jump if Hot Zero (ZF=8)

: B84 BFE B9

: AB4 OFE BB 45 E4 2C 08 mov [ebp+var_ 1G], 2Ch

1 @E4OFET1 :1 mou eax, [ebp+uar_uu]

B4 BFE1Y4 E3 FF FF call sub_4BE188 ; Call Procedure

B4 BFE1Y4

Can't rename byte at 004A5F04 as '_cls_ComcCtrls_TListItem' because this byte can't have a name (it is a tail bytel. ;I
Name 'unknown_libname_493' At O04B408C is deleted...

Mame __OPdsc__'[System::Real4s]' at 004D003E9 is deleted...
Name '°__DPdsc__'[System::PDateTime] ' at 00400460 is deleted...
Mame 'Oreditor::_16475' at 004D6AFE is deleted...

Hame 'unknown_libname_é72' at 004E6243 is deleted...
Propagating type information...

FUNCrion argument informarion is propagated

The initial autoanalysis is finished.

|AU: idle Doy |Disk: 159ME |0000OF409 0040FEDD: sub_40FD10+F3

Red Rectangle:

Here we see the Stack Pointer. Every time we put (“push”) something on the
stack the number is increased by 4 and every time we get something from the
stack (“pop”’) the number is decreased by 4. This is sometime helpful to see
which pushes belong to a certain call.

Orange Rectangles:

Part 4 explained how to manually change these Auto comments. Here you see
the use of it. Each line is automatically commented with these predefined
comments. It is very helpful to see what these commands in the Codeblock
actually do. And as a newbie you will see that Assembler isn’t as cryptic as it
seems at first.

Page 17 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

Green Rectangle:

Here we see our Opcodes. It is nothing more than the Hexvalues for the
command shown at the left. But why have | switched this on now? Sometimes
when you need to patch a program you will see exactly this numbersin your
Hexeditor. Maybe you read some tutorials about changing a 74h to 75h without
knowing what this means. Here is a short explanation with an example. Take
thesetwo lines:

text:0040FDF1 058 74 05 jz short loc_40FDF8 ; Jump if Zero (ZF=1)
.text:0040FDFA 058 7508 jnz short loc_ 40FEO4 ; Jump if Not Zero (ZF=0)

Ignore the 058 as representation of the Stack-pointer here. Each Instruction here
IS represented by 2 byte and the 74 stands for JZ (Jump if Zero) and the 75
stands for INZ (Jump if Not Zero). So changing 74h to 75h at the virtual address
0040FDF1 would give you the following code:

text:0040FDF1 058 7505 jnz short loc_ 40FDF8 ; Jump if Not Zero(ZF=0)

The Browser Function:

§.1DA - idag.exe - [IDA View-A] =[S

2| Ale Edit Jump Search wiew Options Windows Help = |

IDEIHI'--'|“’Hill-|ﬂ|1||h*t Hhexen Hi<|[=#|[asn(fel|ae]: == s
IIJI ElEES '@.III& m[eT[[£AA|[EmEX|ET|EE x| & x| “’n‘”-"—'ﬁ AWAE

B e X w-ov s WK~ [T TR

(DA View | [HexView| M Namesl 7] Functions | B Structures | En. Erums| - Stings |

.text:OO4BFDE1 U5C BB 55 BS mou edx, [ebp+uar_ug]
.text:B804BFDE4 B5C 52 push edx
.text:B040FDES 060 E8 7F 86 6C 68 call j_ strchr_@ ; Call Procedure
.text:004B8FDES
-text:8840FDEA 866 83 C4 B8 add esp, 8 5 Add
.text:884BFDED 858 BB F8 mov edi, eax
.text:808468FDEF B58 85 FF test edi, edi ; Logical Compare
r-|-text:B8846FDF1 858 74 85 jz short loc_ 48FDF8 ; Jump if Zero (2F=1})
! -text:B804B8FDF1
.text:008468FDF3 658 47 inc edi ; Increment by 1
.text:B8040FDF4 858 Co6 47 mov byte ptr [edi-1], @
.text:0B4BFDF8
! .text:084BFDF8 loc_A4OFDFE: ; CODE XREF: sub_4BFD18+E11j
“+|.text:8040FDF8 858 85 FF test edi, edi ; Logical Compare
- |-text:-0848FDFA 058 75 B8 jnz short loc_48FEB4 ; Jump if Hot Zero (ZF=8)
-text:BB4BFDFA
.text:80840FDFC 858 8D 43 M lea eax, [ebx+1] ; Load Effective Address
.text:AB4BFDFF 058 E8 6C E3 FF FF call Suh_!lﬂEil?I] ; Call Procedure
-text:BBUBFDFF
-text:B040FE 4
.text:0B4BFE AL
-text:BO4BFEAY B58 BA 17
-text:BB4BFEAG B583 3A 55 OC
- |-text:0040FEG? 058 75 SB
-text:BB4BFE A2
-text:BO4OFEAB 058 66 CY 45 E4 2
.text:004BFE11 058 BB 45 BC
.text:BO4BFE14 B58 E® 67 E3 FF F

Can't rename byte at 004A43F04 as '_cCls_Comit
Mame ‘unknown_libname_493' at 0048403C is de

Can't rename byte at 004C821C as ' _cls_Buttol
Name ''__DPdsc_ ' [System::Realds]' at 004003 LG EL

Name ' DPdsc_ [System :FDateTime]' at 00400450 i5 deleted...
Mame 'Oreditor:i_16475' at 00406A7FE is deleted.

Hame ' unknowr_ 11bname 672’ at 004EESd3 15 deleted...
Propagating type information.

U idle Down [Disk: 159ME [O000F3FF [0040FDFF: sub_40FD10+EF

| | HES QG B H S || Botaico... | Erotal co... |[@p10a-id... Flievewt... | Euser-[.. | FHma-we.. | GO zaias

Page 18 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

By just clicking once on a call or jump you can see a preview of the code you
would reach by double-clicking on it. Sometimes a preview is enough
information to decide if you want to take a further look or just stay at the place
you are now.

Basic Block Boundaries:

Maybe you don’t recognize this setting at once, but there are spaces between the
code lines that make it easier to read. Normally all code lines are displayed
directly after each other.

Page 19 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

Chapter 3

Part 10 —Hex View

E:IDA - idag.exe - [Hex ¥iew] ;IEIEI

[y Fle Edit Search view Options windows Help =&l
[@l == o |] |7 | d#)l=#|[zanp=ze] - : = =|at s
Ny |BR e =]ler][fsi]lmE x| tnBE x|6 6 x||uws]ss® s 5

enh - = Nxei- k-2 SHKm - 7 =l AR [LIET Bl

DA Viewsd Haw.ew| N Names | 7] Functions | »- Stirgs | B Stuctures | En Enums |

: @04 03600
- 88483618
- 88483628
: 08403630
- 88483648
- BB4 B3G50
: 00403660
- 8848367 8
- B4 B3GR A
: 08403690
s B84 836R 0
- B84 B36BA
:@a4e36eCa
: 88483608
- 8B4 B3GER
: 8B4 836F 8
: B84 837 08
:BB4B37 10
- 86483728
- BB4837380
:BB4B37LA
- 86483758
- 00483768
: 00403770
- 864083780
- BB483798
: 004 037A0
:BB4837B A

Command "JumpEnter” failed ;I
Command " JumpEnter" failed
Caommand "lumpEnter" Tailed
Command " JlumpEnter" failed
Command " JumpEnter" failed
Cammand "JumpEnter" failed
Command "JlumpEnter" failed
Command " JumpEnter" failed
Command "JumpEnter” failed
Comtand " JumpEnter” failed

|AU:ide Do |DEk:130MB 0000207 00403607 sub_403604+3

This Window doesn’t need much explanation. By clicking on a Hexvalue you
will automatically go to the code location in the Main View although it displays
the message “Command ‘JumpEnter ‘ failed” in the Status window.

Page 20 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

Part 11 — Functions

E:IDA - idag.exe - [Functions window] ;Iglll

‘Lﬂl File actions Search Yiew Options Windows Help ==l

([[= s 5 == =l d#ll=+lzsmirezel: :»=[ms s
Nue|Bafrelldxer]fsiBaEx|enm|BE x|em x||ubh|ssE s 5]
T RN R R N] ——r RS T
\DAView-Al Hax\u’iewl N Mames ‘L’—'.ﬂ Functians |"---" Stringsl & Structuresl En Enumsl

Function name | Segment | Start | Length | 51 | F | L | S | B | T | ;l
"LEI] Graphics:: Tleon:ImageMeeded(void] teut Q0470ABC 000000BA R . L . B
‘Lﬂl sub_47DB70 et 00470B70 OO0OOOOBE R . . . B
\lﬂl Graphics: Tleon: Newlmage(uint Classes: Thd test Q0470 C2E 00000073 R L B
‘Lﬂ] unknawn_libname_254 = 00470CSC 00000017 R . L
"LE" Graphics: Tloon: S etHeight(int) tewt oo47DCE4 00OOOOTE R . L . .
"[,EI] nullsub_32 et 00470CCC 0000000 R . . .
‘Lﬂ] Graphics::Tloon: S etwfidth(int] = a0470CO0 00000018 F . L . .
"LE" Graphics: Tlcon:SaveToStream[Claszes: TS, text 0047DCEE 00000029 R . L . .
"[,EI] unknown_libhame_255 et Q0470014 00000011 R . L . B
‘Lﬂ] unknawn_libname_256 test 0470028 0000001 R L B Iy
"LE" Graphics:GetDefFontCharS etwoid] et 00470074 00000043 R L .
\Lﬂl unknown_libname_258 teut 00470EEC 0000000A 3 L .
‘Lﬂl sub_47DEF2 et 0047DEFE 00000004 R . .
"LE" unknowr_libhame_E93 et 00470F04 0000002 R L . B
\Lﬂl Graphics::_16363 et 00470FEE 00000100 R L . B
"Lﬂ] Graphics::AllacPatterrBitmapGraphics: TCala... test Q047E130 00000036 R L . .
"LE" Graphics::Finalization]vaid) et 0047E168 00000002 R L . B
\Lﬂl Forms::_16442 et 004510DC 00000044 R L. T
"LEI] Formns::_16445 et 00481128 00000035 R L.
\Lﬂl Formns::_16446 et 00481160 00000040 R L . B T
"[,EI] sub_4311B0 et 00431180 0000008 4 R . E
"LEI] Forms::EnableT askWindows[vaid *] = 00451264 00000037 3 L .
129c et O048129C 0000006 R L
\Lﬂl unknown_libname_263 teut Q0481300 00000034, 3 L
Mk newin_lhnara 970 bt nnao NnNNnn7n =] 1 T LI
|Line 2743 of 6o81
Command "JumpEnter” failed ;I
Cammand "JumpEnter" failed
Command "JlumpEnter" failed
Command " JumpEnter" failed
Command " JumpEnter" failed
Caommand "lumpEnter" Tailed
Command " JlumpEnter" failed
Command " JumpEnter" failed
The function is already defined, start address at . text:004ESCIE

Command "MakeFunction" failed

|AU: idle Do |Disk: 130ME |00051319 00481019 sub_481C584+C1

Here we see al functions recognised by IDA. By double-clicking or pressing
“Enter” on one of them you will immediately reach this code in the Main View.
Another nice feature here is the ability to search. Just enter the string you are
searching for and, if it is found, you will reach this name. Also, take a look at
the “Action” Menu while working in this window.

Here is a small explanation of the Letters behind the function name:

- function returns to the caller

- far function

library function

- static function

- BP based frame. IDA will automatically convert
all frame pointer [BP+xxx] operands to stack
variables.

T - function has type information

ool Nl -~

Page 21 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

Part 12 — Names

il
M File Actions Search View Options Windows Help = |
IBEIHI'-"HIW“WUHTE“ | dsll=-+lzesnirezel: ;= [ms s

[aa|seals=er]7silimmxun|ED x50 x][ub|ss%ss
oot mmng‘ e o N X“Iun. H-% 5 HEK~~ !HII—_[iIl...Jﬂ_m_U_“_Lmullj‘

D& Views N Names | 171 Functlonsl

MName | Address | Public | ;l
L st 00401000 P -
00401002
L GelExceptDLLlnlm 00401053 F
_isDLL 00401058
__getHInstance 00401066
L Sysinit:__linkproc__ GetTls(void) 00401140
L Syslnit:_16393 00401150
L Suslnit:_16334 ao4o119c
F tddress 004011EC
F ‘winMain 00401200
D *_tpdsc_ [Spstem:dnsiSting] no0ao1ez4
D °_tpdsc_ [Sysutils::Exception] 00401674
L Sysutils::Exception: ~Exception(void) 00401608
D __tpdsc_ [Spstem:TObject] 00401740
D _tpdsc_ [Sysutils::Exception *] ao4017ac
F rullsub_1 00401744
L Sysutils::EVariantE ror: EV ariantEmarin 00401950
D °_tpdsc_[Classes: TSkingList *[2]] Q0401008
D *_tpdsc [Spstem:dnsiSting ¥ 00402700
D _tpdsc_ [Graphics: Tleon <[2]] 00402c7a
L _mw_stder_version[void] 004033FA
unknown libhame 72 00403034 LI
tine: 2 of 8872
Ccommand "JumpEnter” failed ;l
Command " JumpEnter" failed
Command " JumpEnter" failed
Caommand "lumpEnter" failed
Command "JlumpEnter" failed
Command " JumpEnter" failed
Command " JumpEnter" failed
Command " JumpEnter” failed
The function is already defined, start address at . textiO04ESCIE

Command "MakeFunction'" failed

a: idle Down [Disk: 130ME 00000600 |00401000: start
st | NES QS B Y S 13145
“ aTntal Commander 5.50 - ... "(_‘IDA -idag.exe @Funct\nns - Paint | IDA - Micrnsoft Word | @The Interactive Disassem. .. @‘/@5

Here IDA displays all found names from your file. In this window you are also
able to search for names by just entering your string. Double-clicking or “Enter”
will bring you to the location of the name. The small icons in front of the names
have the following meaning:

L (dark blue) - library function
F (dark blue) - regular function
C (light blue) - instruction

A (dark green) - ascii string

D (light green) - data

I (purple) - imported name

You may also take a look at the “Action” menu.

Page 22 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

Part 13 — String Viewer

E:IDA - idag.exe - [String ¥iewer] ;IEIEI
"' File Actions Gearch View Options Windows Help ==l x|
JIDEIHI'--'Hmﬂlllﬂllllm =l dzll=+lzsns=|ze(= % =[ms s

(|6 6|9 | & =] #]]7 4 A]]E 8 & [7 [BE x| aw x][u%]|s 5% 5%
B R IR N TR m—F (TR

\DAVlewAl N Namesl] Funclunsl . Her Wiew 's' StflﬂQVIBWEfl 5" |mpuerlewer| 5" Expurl\f'lawerl

Slrings ‘l

** Shiings from _text segment =
+" th: C++HOOKE UEFN

"s" structview_t

" idaform

5" erumview_t
"s" idaform

=" ThiyDialog
"s" form

"s" TChaooser
"s" chooser

"s" Tl aitForm
" waitform?
3" ThskYesMNa
"s" askynform
5" T Customl DAMema
3" bwtin

g

"s" Gender

"s" TObject

5" Talign

"s" alMane

"s" alTop

" ARt o
4B | _’I_I

|Line 1 of 4305
262144 3z 8122 allocating memory for name pointers... ;I

3743744 total memary allocated

Loading I0DP module <:%\IDAPRO43Npo.w32 for processor metapc...0k
Loading type libraries.

AULtoanalysis subsystem 15 1n1t1a'|1zed

Database for f'l'le 'idag.exe' 15 loaded.

Compiling file 'C: IDAPRO43 jdchida.ide’

EXECLTINg TUNCTion 'main’

|AU: idle Do |Disk: 123ME |00002861 00403261 sub_$031E0+E1

Thiswindow shows us all found Strings. If you are looking for Strings like
“Demo”, “Shareware”, “Trial”, “Invalid registration key” and so on, this
window will be your source. You are also able to search for strings by just
entering your search string. Double-Clicking on your found String will bring
you to the Code Location where the String is used.

Page 23 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

Part 14 — Import Viewer

=laix]
"s" File Actions Search View Options Windows Help =181
[e@ll-=[[#HmE[B] = = BT EO AT =

e EEEEA R R A AR R R P EEE T
T RN R R]| ——r TS T
\DAView-Al N Namesl ‘iﬂ} Functionsl Hex Viewl "s" Sting Viewer =" Import Viewer | e Export\f'iawerl

| Imports ;l
Mgl ez Impoits from ADVAPIZ2 DLL wwsx
"s" RegClosek.ey
"s" RegCreatek eyF xa
":" RegDeletek epd,

":" RegDeletey aluad,

"s" RegE numkeyE xb

":" RegFlushiey

"s" RegDpenkepExs

"z" RegQuenlnfokewd,

"s" RegQuenialuek «d

"s" RegSetyalueE xa

R == | mpoits from KERMEL32 DLL ===
"s" CloseHandle —
"s" CompareStringé,

5" CreateE vents,

"s" CreateFiled

"s" CreateT hread

"s" DeleteCiiticalS ection

"s" DeleteFiled

"s" EnterCritical3 ection

"s" EnumCalendarlnfod,

"s" ExitProcess

"s"FileTimeT oDosDateTime

"s " FileTimeT oLocalFieTime o
< | 3

|Line 523 of 255
262144 3z 819z allocating memory for name pointers... ;I

3743744 total memory allocated

Loading IODP module <:i%IDAPRO43%po.w3z for processor metapc...0K
Loading type libraries...

AUT0analysis subsystem is initialized.

Database for file 'idag.exe' is loaded.

Compiling file 'C:i\IDAPRO43%idchida.ide'...

Executing function 'main’...

|AU: idle Doy |Disk: 123MB |00002861 00403261; sub_$031E0+E1

Thiswindow is very important because here you can see all functions that our
program uses from different DLL"s (Dynamic Link Library). As you might
know, we don’t need to rewrite a function that displays, for example, a Window
every time. It’s the same as if you would rewrite a search or sort algorithm every
time you need it. There you write it once and use it later when you need it by
just calling your function. Here it’s the same. Many function are finished and we
just need to use them. The import window tells us which DLL’s are used and
which functions are called, for example, functions reading and writing to the
Registry. This is not rarely used for storing Serial numbers or Registration keys.
Reading and writing a file is often used for Key-File routines. Here is where you
can collect your ideas to attack the protections or find useful breakpoints for
usage in Softice later. As in the other windows, you are also able to search for
strings by just entering them.

Page 24 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

Part 15 — Export Viewer

E:IDA - idag.exe - [Export ¥iewer] ;Iglll

"' File Actions Search Wiew Opbons wWindows Help ;lilﬂ
[sa|[==[# B - = ds)|-+|[esmfeze]: ;= 2z|as s
e EEEEA R R A AR R R P EEE T

wn g e - Nx|o- v s MK~ 2T 1R O S

\DAView-Al N Namesl i) Functionsl Hax\u’iewl 5" StringViewerI "s" Import Wiewer s EHDOTWIB"\‘Bfl |

Memo@0rHint$ggrpipo (2]

"s" @@ daformi@lnitialize (3]

;" @@ daform@Finalize (4]

"s" @5 ystem@T Object@ClassMamel s$qqrd] TSystem@ansiSting (5]
"s" @@Form@nitialize (5]

;" @@Form@Finalize (7]

"s" @EChoosen@ nitialize [3)

"s" @EChoosen@Fingize [3)

s " @iE aitform2@lnitialize (10)

"s" @EW atform2i@Finalize [11)

"s" @iEdskynform@Initialize [12]

"s" @@dskynform@Finalize (13]

" @Twin@Registerbqgry [14]

"s" @T Custom| DAMemo@sel_ful_redrawdggro [15]

s " @T Custom| DAMemo@$betrbqarp Bllasses@T Component] 7S ystem@ansiSting [16)
"s" @T Customl DAMemal@allS etFont$qqrp 4Graphics@TFont [17)]

"s" @T CustomlDAMemo@F ontChangedagry (18]

3" @T Custom| DAMemo@ nitialize$qqrp7place_tt rStwinpos_tipy (19]
"s" @T CustomiDAMema@$bdirbgqry (20)

"s" @T Custom| DAMemo@barredvalustagre (21

"s" @T Custom| DAMemal@setminmarpos$ganiplace_tt (22]

5" @T Custom| DAMema@R esizeE ventdogrp 4System@T Object [23)
:si' @T Custom| DAMemo@ivmoT oftart$oary (241 | _,lLI

|Line 1 of 400
262144 3z 819z allocating memory for name pointers... ;I
3743744 total memory allocated

Loading IODP module <:i%IDAPRO43%po.w3z for processor metapc...0K
Loading type libraries...

AUT0analysis subsystem is initialized.

Database for file 'idag.exe' is loaded.

Compiling file 'C:i\IDAPRO43%idchida.ide'...

Executing function 'main’...

|AU: idle Doy |Disk: 123MB |00002861 00403261; sub_$031E0+E1

Thiswindow isvery useful when reversing DLL’s because it displays all
functions that may be called and used by different programs.

For example, we have a self-written protection scheme from a software
company and they provide a DLL managing all Registration functions. You may
want to take a look at which functions the DLL provides to get valuable ideas
for further proceeding. Again, you are able to search by just entering your
strings.

Page 25 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

Part 16 — Cross-references

E:IDA - idag.exe - [xrefs to sub_403428] ;IEIEI
_|&lx

L4l File Actions Search Yiew Options Windows Help

IBEIIII--IHWMIIEIIIITM = =+ msmiesze]: %=1 s
SIEENEE A E Y ﬁflJIM*@xluﬂHI@@xlaaxluwﬁw\uﬁ&w&&\
magxswg' N T R AL N A A —

\DAVlewAl N Namesl] Functlonsl = Hax\u’lewl 5" StrlnngewerI 5" ImportV|ewer| " Ewport Viswer Lal wefsta SUb_4U342B|

Direction Type Address Instruction

_text: 00404791 call sub_403428 : Call Procedurs

L,d, ann p tewt 00404705 call sub_403428 : Call Procedure
Lud Down p text:004047F3 call sub_403428 : Call Procedure

Line 1 of 3
' =

262144 32 8132 allocating memory for name pointers...

3743744 total memory allocated

Loading IDF module C:WIDAPRO43MVpC.w32 for processaor metapc...0k
Loading type libraries.

Autoanalysis subsystem 15 1n1t1a'|1zed

Database for f'l'le 'idag.exe' is loaded.

Compiling file 'c: I0AFRO43 jdchida.ide’

Executing function 'main'

|,\1U: idle Doy |Disk: 123ME |0000ZAZS 00403428: sub_403428

Thiswindow shows all Cross-references of the function in the window we
created. That means all Code locations where our function is called. To create
this window, place your cursor on the header of the function, select View/Open
Subview/Cross-reference and a new window with al Cross-References for this
function is created. The name of the window should be “xrefs to ‘function
name’”. Normally you see all Cross-references but sometimes, when there are
more than 3 or 4 references (maybe 20 or more), creating a Cross-reference
window might be useful. Double-Clicking on one of them in the list will bring

you to the Code locations.

Page 26 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

Part 17 — Function Calls

li‘ID.I\ - idag.exe - [Callers and Callees: sub_403428] - Dlll

W Fle Edit Jump Search Wiew Options Windows Help == x]

Ianlu—-luwmlnllllrm = HF == S m]=e=m o] | mE s
ANEEEL '@.III& meT[Z4A|[EmE x| 2T |EE x| 88 x| “’n‘”-"—'ﬁ &wm&\

ofot) oion ngi e ox N X|” or - v 8 MK~ i““ﬁj

\DAVlewAl N Namesl 151 Functlonsl . Hex Vlewl s" Stiing Vlewerl 2" Impart Vlewerl 5" Export\f'lawerl 1L srefs to sub_402428 U7 Callers and Calless |

Address | Caller | Instruction |
teut: 00404791 call sub_403428 ; Call Procedure
_text:004047C5 call sub_403428 ; Call Procedure
tent:004047F3 call sub_403428 ; Call Procedure
I Address | Called funct\on
temt (040013475 i H cedure
text: 00403443 caII suh 43DE?8 EaII Prncedura
262144 3z 819z allocating memory for name pointers... ;I
3743744 total memory allocated

Loading IDF module C:\IDAPRD43\p:.w32 for processor metapc...0K

Loading type libraries.

AUT0aNATYSis suhsystem 15 1n1t1a'|1zeﬂ
Database for ﬁ'le 'idag.exe' is loaded.
Compiling file 'C: IDAPRO43 jdchida.ide’
ExECLEing TUNCEion 'main’

|AU: idle Doy |Disk: 123ME |0000ZAZE 00403428; sub_403428

This window shows you the Cross-references in the upper part of the window
and additionally it also displays al functions called by functions. That isvery
nice to get a general overview of the function and how many functions you
might need to check further.

For example, let’s say a function is our Serial Check routine and the first call
inside is for converting our Input String to Hex. The second call then checks if
our serial is correct. The Cross-references tell you how often and where the
Serial Check is performed. To open this window place your cursor on the first
line of the function and select:

View/Open Subview/Function Calls

Page 27 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

Chapter 4 — Navigating through the Code

Part 18 — The Arrows in front of the Code

These arrows represent the execution flow, namely the branch and jump
instructions. The arrow color can be:

Red:

That means the arrow source and destination don't belong to the same function.
Usually the branches are within functions and the red color will conspicuously
represent branches from or to different functions.

Black:

Black isthe currently selected arrow. The selection is made by moving to the
beginning or the end of the arrow using the Up or Down keys or by left-clicking
on the arrow start or the arrow end. The selection is not changed by pressing the
PageUp, PageDown, Home, End keys or by using the scrollbar. This allows you
to trace the selected arrow far away.

Grey:
All other arrows

The arrow thickness can be:
Thick:
A backward arrow: Backward arrows usually represent loops. Thick arrows

represent the loops in a clear and notable manner.

Thin:
Forward arrows.

Finally, the arrows can be solid or dotted. The dotted arrows represent
conditional branches where the solid arrows represent unconditional branches.

Page 28 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

Part 19 — Following the Jumps and Calls

I think the best way here is to give a small example. Let’s say we are at the
following Code Location:

.text:0040326F 414 OF 84 9D 00 00 00 jz loc 403312

Double-clicking on “loc_403312” will lead us to the following Code Location at
the line 00403312.

.text:00403312 loc_403312:
.text:00403312

text:00403312 424 8B C3 mov eax, ebx
text:00403314 424 81 C4 08 04 00 00 add esp, 408h
.text:0040331A 01C 5F pop edi
.text:0040331B 018 5E pop esi
.text:0040331C 014 5B pop ebx
text:0040331D 010 C3 retn

Double-clicking on the location at the jump will lead us to the point that the
jump would go.

In the same we can use this for following Calls. Check out the following
example.

text:00403244 414 8B D7 mov edx, edi
1ext:00403246 414 8B C6 mov eax, esi
text:00403248 414 E§ 2B B6 03 00 call sub 43E878
1ext:0040324D 414 33 C9 XOr €CX, €CX

Let’s say we are at line 403248 and double-click at “sub _43E878”. We will
land at the following Code location at line 43E878.

.text:0043E878 sub 43E878 proc.text:0043E878
.text:0043E878

text:0043E878 000 53 push ebx
text:0043E879 004 8B D8 mov ebx, eax
text:0043E87B 004 56 push esi

Notice: I left out the Comments and Code References for readability.

Page 29 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

Part 20 — Using the Forward/Backward Arrows

The third and fourth icons in the Toolbar are usually two arrows, one pointing to
the left (Backward Arrow) and the other one to the right (Forward Arrow).
These two arrows can be used to move forward and backward in the Code. Take
the two examples from Part 19. If we followed the Jump and now want to go
back, press the “Backward Arrow”. If you want go to return to the location the
Jump led to, press the “Forward Arrow”. Your last moves are stored and may
help you navigating through the Code.

Part 21 — Using Cross-references

| think the best way here isto give an example. Take alook at the following
Code:

.text:004559A9 loc_4559A9: ; CODE XREF: sub_4557A8+A8[]]
.text:004559A9 ; sub_4557A8+11CLj
.text:004559A9 ; sub_4557A8+1B70]j
.text:00455949

text:004559A9 OCC 5F pop edi

.text:004559AA 0C8 5E pop esi

.text:004559AB 0C4 5B pop ebx

Fine, now let’s imagine this location is our badguy-location and we need to
check all jumps that lead to this Code location. When we do a double-click on
“sub_455748+A8;” we will reach the first one. By double-clicking on
“sub_4557A8+11C;” we reach the second and so on. For this example all Code
locations would be:

.text:00455850 0CC E954010000 jmp loc 4559A9 ; Jump
.text:004558C4 0CC E9E0000000 jmp loc 4559A9 ; Jump
.text:0045595F 0CC EB 48 jmp short loc_4559A9 ; Jump

Page 30 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

Ok, now lets take an example for Code-references leading to a function. Take a
look at the following Code:

1ext:0045565C sub 45565C proc near ; CODE XREF: sub_455464+B1(1p

.text:0045565C ; sub_455CAC+440p
.text:0045565C ; sub_457784+11000p
.text:0045565C

some code

text:004557A5 sub_45565C endp

Lets say thisis our Serial-Check function and now we need to check at which
locationsit is called. By double-clicking on “sub_455464+B1p” we will reach
the first call. By clicking on “sub_455CAC+44p” the second call and so on. For
this example all our Code location would be:

.text:00455515 0BO E8 42 01 00 00 call sub 45565C ; Call Procedure
.text:00455CF0 048 E8 67 FO FF FF call sub 45565C ; Call Procedure
.text:00457894 064 E§ C3 DD FF FF call sub_45565C ; Call Procedure

In fact, it’s the same as in Part 19. We just follow things the other way around.

Part 22 — The Jump Menu

The menu explains itself, but | will give two small examples that are useful.
Also, take note of the Hotkeys of the other menu entries. They may become very
handy.

Jump to Address (Hotkey: ‘’):

X
Jump address I j
] Cancel | Help |

This 1s very simple to understand. Just enter the address you want to go to and
press “OK”. You also have a history of the last addresses you jumped to.

e.g. 0040BFB2

Page 31 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

Jump to entry point (Hotkey: ‘CTRL-E’):

ioix)

i arne | Addrezs | r... | :l
_SupportBox Q050FS6C 386
_MaoteBox Q050F5E4 287
_InfoBox Q050FSY0 Jaa
_MizraForm Q050F5YE K]
_LicenzeForm Q050F534 390
_MDIFarm Q050FSEC 391
Dropsource:: CF_FILEGROUFDESCRIFTOR Q0R0F5Sa 392
Dropsource:CF_FILECOMTEMTS Q050F53C 393
Dropzource::CF_FILEMAMEMAP Q050F5A0 394
Dropzource::CF_FILEMAMEMAPW Q050F A4 395
Dropzource::CF_IDLIST Q050F5AS 396
Dropsource:: CF_PREFERREDDROPEFFECT 0O0S0FSALC 297
Dropsource:CF_LIRL Q050F5E0 K]
Dropzource:: Shelkd alloc Q050F5E 4 399

00401000 j

k. Cancel Help Search |
Line 400 of 400 y

Just select the one you wish from the list and press “OK”. The entrypoint “start”
is the beginning of the program. That might be very useful if you are looking for
Nag-Screens displayed at the program start.

Page 32 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

Chapter 5 - Making the Code more readable
Part 23 — Adding Comments

It’s very useful to comment the code you already worked through and the parts
you understood. Otherwise you could step over this code section again and again
and loose a lot of time that could be better spent elsewhere. Comments can be
added for every Code line. There are 3 possible ways to enter a comment for a
code line.

1. Using the Toolbar, there is an icon displaying an “:”

2. Placing your cursor at the end of the code line, pressing the right mouse

key and selecting “Enter Comment” at the upcoming menu.
3. Using the Hotkey : “:”

Please enter text x|

E nter comment

aE Cancel Help |

Here you can enter one or several lines for commenting the Code line.
Pressing “OK” will add your comment to the Main Window.

Page 33 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

You are also able to add “repeatable comments”. They can be accessed by the
following 3 ways.
1. Using the Toolbar there is an icon displaying an *;”
2. Placing your cursor at the end of the code line, pressing the right mouse
key and selecting “Enter repeatable Comment” at the upcoming menu.
3. Using the Hotkey : *;”

I suggest you try it out yourself. But they are only useful in some cases.

Part 24 — Adding Lines

You are able to add Lines with comments between the Code. Here you have 2
possibilities:

1. Creating a Line before your current Code line (Enter additional anterior lines)
2. Creating a Line after your current Coder line (Enter additional posterior lines)

These options can be reached in the following ways:

1. Using the Hotkeys: “INS” or “Shift+INS”
2. Using the 2 Toolbar Icons after the “:” and *;” Icons

The Window for entering your comment lines would look like the following.
Depending on which of the two you selected, it will say either “anterior” or
“posterior”.

|
Please enter text X|

E nter additional anteriar lines

aE Cancel | Help |

Page 34 of 36

Copyright 2003 by [nAbOo| - Don't make this tutorial public and don't give it away !!!

Part 25 — Renaming Functions, L.ocations

At first you might think Renaming is useless. But it’s very helpful once you find
out which functions does what or that this location is representing a loop or this
variable is used for storing your Serial-Number by just giving some example. It
also helps you in reversing your target more effectively.

Renaming Functions:

Move your cursor on the header of your function. Then right-click with your
mouse and select “Rename” in the upcoming menu. A window like the
following should pop up:

i

Addrezs: DxdBFFC

Hame

Masimum length of new names |1 5 vI
Local name prefiz I@@ vI

[~ Local name
¥ |nclude in names list
[T Bublic name
[T Autogenerated name
[T weak name
[T Create name aryway

[k, Cancel Help |

After entering a new name press “OK” and the function is renamed. Now, every
representation of the old name is replaced with your new name.

e.g. call sub 40BFFC to call SerialCheck.
Notice: When you build an NMS file with the Ida2Softice Plugin and you

renamed a function this function is displayed in Softice later with your new
name.

Page 35 of 36

Copyright 2003 by |nAbOo| - Don't make this tutorial public and don't give it away !!!

Renaming L ocations;

Place your cursor on the name of the location. Press the right mouse key and
choose “Rename”. There will be a window like the following:

X

Address: 0240C08 3
Hame |k

M awirnurm length of new names I‘I 5 v'I
Local name prefig I@@ v'I

[+ Local name
[T Include in names list
[Public name
[T Autogenerated name
[Weak name
[~ Create namme atipmay

0k, Cancel Help

Enter a new name for this location and press “OK”. Every representation of the
old name is replaced with your new name.

e.g. jnz loc 40COB3 to jnz myname

You can ‘Rename’ a lot of things in IDA, not just the two examples [mentioned
above, so make sure to try them out. The renaming option is very helpful in
making your code more readable.

Page 36 of 36

