
Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 1 of 36

IDA – Interactive Disassembler

Chapter 1 - Preparations

Part 0 – Introduction…………………………………………………..Page 3
Part 1 – Installing IDA……………………………………………….. Page 4
Part 2 – Getting the Plugins and Addons…………………………….. Page 4
Part 3 – Installing the Plugins and Addons…………………………... Page 5
Part 4 – Changing the Auto Comments……………………………….Page 7
Part 5 – Config Files…………………………………………………..Page 7

Chapter 2 – First Approach

Part 6 – Our First Approach………………………………………….. Page 8
Part 7 – The Main Window…………………………………………...Page 11
Part 8 – Accessing the Plugins……………………………………….. Page 13
Part 9 – The Options Dialog…………………………………………..Page 14

Chapter 3 – The different Windows

Part 10 – Hexview…………………………………………………….Page 20
Part 11 – Function Window………………………………………….. Page 21
Part 12 – Names Window……………………………………………. Page 22
Part 13 – Strings References…………………………………………. Page 23
Part 14 – Imports……………………………………………………...Page 24
Part 15 – Exports……………………………………………………...Page 25
Part 16 – Cross-references…………………………………………….Page 26
Part 17 – Function Calls………………………………………………Page 27

Chapter 4 – Navigating through the Code

Part 18 – Arrows in front of the Code………………………………...Page 28
Part 19 – Following Jumps……………………………………………Page 29
Part 20 – Using the Forward/Backward Arrows……………………...Page 30
Part 21 – Using Cross References…………………………………….Page 30
Part 22 – The Jump Menu……………………………………………. Page 31

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 2 of 36

Chapter 5 – Making the Code more readable

Part 23 – Adding Comments…………………………………………. Page 33
Part 24 – Adding Lines………………………………………………. Page 34
Part 25 – Renaming Functions, Locations and more………………… Page 35

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 3 of 36

Chapter 1 – Preparations

Part 0 – Introduction

Hi everyone,

This is my first tutorial and the first lesson so please don’t be rude. Due to the
fact that English is not my native language there may be errors. Feel free to
contact me so that I can correct them.

Some people may ask why I have written this tutorial since everyone who is into
cracking knows how to deal with IDA and newbies normally use W32DASM,
changing later when they are advanced. I am trying a different approach. It’s
2003 now. W32DASM has lots of mistakes and is less powerful than IDA. I
decided to make this tutorial for newbies as a First Approach to IDA so that
their first tool is a powerful and helpful one for learning how to crack programs.
IDA offers Auto Comments so the Assembler language isn’t as cryptic for
newbies.

Of course, it is useful to have an Assembler Book as a reference but some things
may become clearer by just viewing the comments that may be advanced. I
won’t expect any Assembler knowledge in this tutorial and Assembler will be
addressed in my second tutorial. I want this tutorial to cover the most used
functions in IDA. It will not be complete and won’t replace the help file from
IDA. Make sure to read the help file if you run into problems.

I will try to explain a lot of things with screenshots but don’t expect a graphical
step-by-step walkthrough for every case. I set goal of one week to complete this
tutorial because in one week I promised my first lesson.

|nAbOo|

!!!

2 Paragraphs were delete due to

internal group infos and nicks
 from group members

!!!

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 4 of 36

Part 1 – Installing IDA

Installing IDA is very simple because it doesn’t really need any installation. Just
extract all the files from the release you have to your favorite folder and make
sure to extract the subdirectories properly.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\

In this tutorial I will use IDA PRO Advanced 4.30

Part 2 – Getting the Plugins and Addons

Ok, so far so good. There are some nice Plugins and Addons out in the web. The
ones I mention here are very useful and I am sure you will need them often.
Some will be useful when you try to crack harder programs.

LoadINT 4.21 – For changing the AutoComments displayed in IDA
Flair Tools 4.16 – For creating your own signatures
SIE Plugin – Adds Windows for Strings, Imports, Exports to IDA
Ida2Softice – Creates NMS files of your current Database which

make Debugging your apps easier
Ida 4.3 SDK - Gives you the possibility to write your own Plugins

Get them at the following URLS:

http://mostek.subcultural.com
http://wasm.ru/toollist.php?list=13

Notice: In case the URLS are down, don’t ask the people mentioned in the
Introduction or me to send you one of these files. We don’t spread Warez
and Files so don’t even try. Use www.google.com or your favorite search
engine to find the files.

http://mostek.subcultural.com
http://wasm.ru/toollist.php?list=13
http://www.google.com

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 5 of 36

Part 3 – Installing the Plugins and Addons

LoadInt 4.21:

Extract all files to your main IDA folder. Make sure to rename the README
file from the LoadInt 4.21 package to something else for further usage.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\

Flair Tools 4.16:

Create a sub directory in your IDA folder and extract all files including
subdirectories to that folder.
e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\Flair Tools

Ida Pro SDK 4.30:

Create a subdirectory in your IDA folder and extract all files including
subdirectories to that folder.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\Ida SDK 4.3

SIE Plugin:

Extract the files to a temporary directory and copy the file plugs.plw to your
IDA plugin directory.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\Plugins

Make sure to copy the correct file concerning your version of IDA to your
Plugin folder. For example, if you use IDA PRO Advanced 4.30 use the
plugs.plw from the following folder:

e.g. C:\tempdirectory\4.30\plugs.plw

http://e.g.c:\tempdirectory\4.30

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 6 of 36

SIE Plugin (continued):

Now you need to edit the file plugins.cfg in your IDA Plugins folder.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\Plugins\Plugins.cfg

You need to add the following lines at the end of the file:

Strings_BugFix plugs 0 3
Exports plugs SHIFT-E 2
Imports plugs SHIFT-I 1
Strings plugs SHIFT-S 0

Save the file afterwards and delete the temporary folder. See the explanations in
the file Plugins.cfg for further details.

Ida2Softice Plugin:

Extract the files to a temporary directory and copy the file i2s.plw to your IDA
Plugin directory.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced\4.30\Plugins

Make sure to copy the correct file concerning your version of IDA to your
Plugin folder. For example if you use IDA PRO Advanced 4.30 use the i2s.plw
from the following folder:

e.g. C:\tempdirectory\4.30\i2s.plw

Now you need to edit the file plugins.cfg in your IDA Plugins folder.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced\Plugins.cfg

You need to add the following lines at the end of the file:

I2S_Setup i2s 0 3
I2S_Source_Info i2s Ctrl-F12 2
I2S_Save_NMS i2s Shift-F12 1
I2S_Conversion i2s F12 0

Save the file afterwards and delete the temporary folder. See the explanations in
the file Plugins.cfg for further details.

http://e.g.c:\tempdirectory\4.30

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 7 of 36

Part 4 – Changing the Autocomments

If you have installed LoadINT 4.21 there will be a file PC.CMT in your IDA
main folder. Use your favorite editor to change and advance the comments for
the Assembler command to your needs. Also, take a good Assembler book and
advance the comments to your liking. However, this is just a hint that might be
helpful as you start to use Assembler.

This is what you need to do so that IDA shows your changed Autocomments.

1. Edit the PC.CMT with your favorite editor and save it
2. Call the File COMPILE.BAT from the IDA main folder

For further details take a look at the Readme file included with LoadINT 4.21.
Make sure that IDA is not running when running COMPILE.BAT or the file will
produce an error even if the syntax of the CMT files is correct. That is because
the program tries to write to the file IDA.INT and if IDA is running, the file is
open and can’t write to it.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\PC.CMT
e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\Compile.bat
e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\README

Part 5 – Config Files

It is very useful to know the configuration files because IDA doesn’t save the
options you set. After reading the following chapters you might want to make
some changes. I won’t give you details about the configuration files. In fact,
they are very well commented and it should be an easy task to change them to
your needs, for example adding Macros, changing Hotkeys or just changing the
display.

Here are the locations and names of the configuration files:

e.g. C:\Program Files\Datarescue\IDA PRO Advanced\IDA.CFG
e.g. C:\Program Files\Datarescue\IDA PRO Advanced\IDAGUI.CFG
e.g. C:\Program Files\Datarescue\IDA PRO Advanced\IDATUI.CFG
e.g. C:\Program Files\Datarescue\IDA PRO Advanced\SIG\Autoload.cfg
e.g. C:\Program Files\Datarescue\IDA PRO Advanced\Plugins\Plugins.cfg
e.g. C:\Program Files\Datarescue\IDA PRO Advanced\IDS\IDSNAMES

There are more but they are for different processor modules that we won’t need
here.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 8 of 36

Chapter 2 – First Approach

Part 6 – Our First Approach

After showing you many things and doing a lot of preparations, it is time to start
IDA and take a first look at the program. There are a lot of executable files.
Which is the correct one?

IDA2.EXE This file is used when you run OS/2
IDAX.EXE This file is used when you run DOS and want to run it with

DOS/4GW Extension in Protected Mode
IDAW.EXE This file is used for normal DOS Mode
IDAG.EXE This file is used when you use Win95 or above and features a

nice Graphical User Interface

In this tutorial I will only handle the GUI version of IDA because it’s the most
used version.

Start IDAG.EXE and press “OK” when the License Dialog is shown.

Now you should see a Dialog that gives you three choices:

1. New (Disassemble a new File)
2. Go (Work on your own. This will start IDA without disassembling a file)
3. Previous (Load a previously disassembled file)

If you select “Don’t display this dialog box again” you will automatically start
in the 2nd mode the next time. In case the dialog box is still shown at the start of
the program check the configuration files and make a setting there.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 9 of 36

This is your first start now so choose “New”. Next there is a File Dialog where
you can select the file you wish to disassemble. I suggest you choose
IDAG.EXE in our IDA main folder and press “OK” afterwards.

e.g. C:\Program Files\Datarescue\IDA PRO Advanced 4.30\IDAG.EXE

Now IDA prompts with another Dialog that looks like the following:

In this dialog we can tell IDA what we know about our file. Most Windows files
are so-called PE files. It is a defined format of how the files look. So in 99% of
all cases this is the correct choice.

For Processor type we keep the setting :
Intel 80x86 processors: metapc.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 10 of 36

This means IDA tries to use all possible Assembler commands even the Intel
specific ones and MMX instruction set to show us our code. There are more I
haven’t mentioned but this setting is the most useful. If you know exactly for
which CPU the program was written, here is where you can change the
processor the program was written for. Also, here we keep metapc in 99% of all
cases.

After knowing how to handle IDA you may take a look at the Kernel Options
and Processor Options to do some fine-tuning but for now just keep the standard
settings and press “OK”.

Now IDA should start working. After displaying some messages and building up
the screen, you are able to take a first look at your disassembled code
(Deadlisting). The first thing we do now is arranging the Toolbar and moving
the Overview Navigation Window to the Toolbars. Next, increase the window
size of “IDA View A” to maximum. Now our program should look like the
following:

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 11 of 36

The yellow small circle (light) at the left of our Toolbar shows us that IDA is
thinking and still working on creating our Deadlisting. There are three possible
colors:

Green : Ready
Yellow: Thinking
Red: Critical

Depending on your CPU, the disassembling may take some time. When the
disassembling is finished, the small circle will turn green and a message saying
“The initial autoanalysis is finished” will be displayed in the status window.

Part 7 – The Main Window

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 12 of 36

Here is a short explanation of the shown information:

Red Rectangle:
Like in every other program we see the Menu Bar of IDA

Light Blue Rectangle:
Toolbar to reach most of the options of IDA by clicking on the icon

Pink Rectangle:
Different windows like “IDA View A” (our main view), Hexview, Strings,
Names, Functions, Imports, Exports, Crossreferences and so on

Green Rectangle:
Arrows show where the jumps in the code block lead and are useful to recognize
small loops or to follow a function.

Black Rectangle:
The section name followed by the virtual address: This is the same addresse you
would see in Softice while debugging

Light Yellow Rectangle:
The Code locations can be compared to jump marks. Every location jumped to is
marked like that except the functions themselves.

Grey Rectangle:
The Code of our disassembled program.

Brown Rectangles:
Code References: They show from which points of the program the Code
locations are accessed. When double clicking on them you reach the code where
the location or function is called or jumped to.

Dark Blue Rectangle:
This is the Status window that shows our last actions and tells us what IDA is
doing at the moment.

Dark Yellow Rectangle:
A small status display that shows if IDA is working at the moment and at which
location it is working.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 13 of 36

Orange Rectangle:
The file offset of our current code location: Very useful when you try to patch a
program and want to know the translation from virtual address <-> file offset to
find the correct location you want to patch.

Blue Text in Black Rectangle:
Our current code line we are working on.

Part 8 – Accessing the Plugins

In Part 3 of this tutorial I explained how to install plugins for IDA. Now I will
show you how to reach them in IDA.

There are two ways. You can either use the hotkey you defined when adding the
lines to the file plugins.cfg or you can access them manually by going through
the following menus:

e.g. Edit/Plugins/String References
e.g. Edit/Plugins/Imports
e.g. Edit/Plugins/Exports
e.g. Edit/Plugins/Ida2Softice

After calling them they will either pop up a new window or a new window is
shown at the Pink Rectangle Area.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 14 of 36

Part 9 – Showing more information and Alignment

To access the Options, select Options/General from the Menu bar and you
should get the following Popup:

Now check the following checkboxes:
Stack pointer, Auto comments, Bad instruction marks, and Basic Block
boundaries

Enter the number “8” at the textfield at “Number of opcode bytes”

Take a look at the 2 textboxes in the bottom left called:
Instruction indention, Comments indention

By increasing these numbers you move these parts to the right. By decreasing
them you move them to left. Play with these values later to arrange your display
and enter these values in your configuration files.

Now switch to the Cross-references window at the top and you should see the
following:

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 15 of 36

The interesting part here is “Number of displayed xrefs”. In Part 7, I gave a
short explanation of Cross-references. IDA normally shows only 2 of them but
suppose a function is called 5 times in our code and we want to check all five
calls to this function. We need to show more than 2. I suggest you set a value
around 200 or so in this box and that should normally show you all Cross-
references of the code. Also, make sure to change this value in the configuration
file.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 16 of 36

In the Menus Color-1 and Color-2 you are able to change all colors as you wish.
I won’t give another explanation for this because it should be very simple.
Instead of the colors we will take a small look at the “Browser” menu. It is also
very useful because it gives us the opportunity to see code by just moving over a
jump or a call without going to this location.

Useful settings here are:

Auto highlight the current identifier : Yes
Number of lines for auto scroll : 4
Number of lines for identifiers hints : 30-40
Permit to resize the hint by using the mouse wheel : yes

That was lots of settings. Now let’s see the effects. Our Window should now
look something like the picture on the following page:

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 17 of 36

Red Rectangle:

Here we see the Stack Pointer. Every time we put (“push”) something on the
stack the number is increased by 4 and every time we get something from the
stack (“pop”) the number is decreased by 4. This is sometime helpful to see
which pushes belong to a certain call.

Orange Rectangles:

Part 4 explained how to manually change these Auto comments. Here you see
the use of it. Each line is automatically commented with these predefined
comments. It is very helpful to see what these commands in the Codeblock
actually do. And as a newbie you will see that Assembler isn’t as cryptic as it
seems at first.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 18 of 36

Green Rectangle:

Here we see our Opcodes. It is nothing more than the Hexvalues for the
command shown at the left. But why have I switched this on now? Sometimes
when you need to patch a program you will see exactly this numbers in your
Hexeditor. Maybe you read some tutorials about changing a 74h to 75h without
knowing what this means. Here is a short explanation with an example. Take
these two lines :

.text:0040FDF1 058 74 05 jz short loc_40FDF8 ; Jump if Zero (ZF=1)

.text:0040FDFA 058 75 08 jnz short loc_40FE04 ; Jump if Not Zero (ZF=0)

Ignore the 058 as representation of the Stack-pointer here. Each Instruction here
is represented by 2 byte and the 74 stands for JZ (Jump if Zero) and the 75
stands for JNZ (Jump if Not Zero). So changing 74h to 75h at the virtual address
0040FDF1 would give you the following code:

.text:0040FDF1 058 75 05 jnz short loc_40FDF8 ; Jump if Not Zero(ZF=0)

The Browser Function:

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 19 of 36

By just clicking once on a call or jump you can see a preview of the code you
would reach by double-clicking on it. Sometimes a preview is enough
information to decide if you want to take a further look or just stay at the place
you are now.

Basic Block Boundaries:

Maybe you don’t recognize this setting at once, but there are spaces between the
code lines that make it easier to read. Normally all code lines are displayed
directly after each other.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 20 of 36

Chapter 3

Part 10 –Hex View

This Window doesn’t need much explanation. By clicking on a Hexvalue you
will automatically go to the code location in the Main View although it displays
the message “Command ‘JumpEnter ‘ failed” in the Status window.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 21 of 36

Part 11 – Functions

Here we see all functions recognised by IDA. By double-clicking or pressing
“Enter” on one of them you will immediately reach this code in the Main View.
Another nice feature here is the ability to search. Just enter the string you are
searching for and, if it is found, you will reach this name. Also, take a look at
the “Action” Menu while working in this window.

Here is a small explanation of the Letters behind the function name:

R - function returns to the caller
F - far function
L - library function
S - static function
B - BP based frame. IDA will automatically convert

all frame pointer [BP+xxx] operands to stack
variables.

T - function has type information

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 22 of 36

Part 12 – Names

Here IDA displays all found names from your file. In this window you are also
able to search for names by just entering your string. Double-clicking or “Enter”
will bring you to the location of the name. The small icons in front of the names
have the following meaning:

L (dark blue) - library function
F (dark blue) - regular function
C (light blue) - instruction
A (dark green) - ascii string
D (light green) - data
I (purple) - imported name

You may also take a look at the “Action” menu.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 23 of 36

Part 13 – String Viewer

This window shows us all found Strings. If you are looking for Strings like
“Demo”, “Shareware”, “Trial”, “Invalid registration key” and so on, this
window will be your source. You are also able to search for strings by just
entering your search string. Double-Clicking on your found String will bring
you to the Code Location where the String is used.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 24 of 36

Part 14 – Import Viewer

This window is very important because here you can see all functions that our
program uses from different DLL´s (Dynamic Link Library). As you might
know, we don’t need to rewrite a function that displays, for example, a Window
every time. It’s the same as if you would rewrite a search or sort algorithm every
time you need it. There you write it once and use it later when you need it by
just calling your function. Here it’s the same. Many function are finished and we
just need to use them. The import window tells us which DLL’s are used and
which functions are called, for example, functions reading and writing to the
Registry. This is not rarely used for storing Serial numbers or Registration keys.
Reading and writing a file is often used for Key-File routines. Here is where you
can collect your ideas to attack the protections or find useful breakpoints for
usage in Softice later. As in the other windows, you are also able to search for
strings by just entering them.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 25 of 36

Part 15 – Export Viewer

This window is very useful when reversing DLL’s because it displays all
functions that may be called and used by different programs.

For example, we have a self-written protection scheme from a software
company and they provide a DLL managing all Registration functions. You may
want to take a look at which functions the DLL provides to get valuable ideas
for further proceeding. Again, you are able to search by just entering your
strings.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 26 of 36

Part 16 – Cross-references

This window shows all Cross-references of the function in the window we
created. That means all Code locations where our function is called. To create
this window, place your cursor on the header of the function, select View/Open
Subview/Cross-reference and a new window with all Cross-References for this
function is created. The name of the window should be “xrefs to ‘function
name’”. Normally you see all Cross-references but sometimes, when there are
more than 3 or 4 references (maybe 20 or more), creating a Cross-reference
window might be useful. Double-Clicking on one of them in the list will bring
you to the Code locations.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 27 of 36

Part 17 – Function Calls

This window shows you the Cross-references in the upper part of the window
and additionally it also displays all functions called by functions. That is very
nice to get a general overview of the function and how many functions you
might need to check further.

For example, let’s say a function is our Serial Check routine and the first call
inside is for converting our Input String to Hex. The second call then checks if
our serial is correct. The Cross-references tell you how often and where the
Serial Check is performed. To open this window place your cursor on the first
line of the function and select:

View/Open Subview/Function Calls

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 28 of 36

Chapter 4 – Navigating through the Code

Part 18 – The Arrows in front of the Code

These arrows represent the execution flow, namely the branch and jump
instructions. The arrow color can be:

Red:
That means the arrow source and destination don't belong to the same function.
Usually the branches are within functions and the red color will conspicuously
represent branches from or to different functions.

Black:
Black is the currently selected arrow. The selection is made by moving to the
beginning or the end of the arrow using the Up or Down keys or by left-clicking
on the arrow start or the arrow end. The selection is not changed by pressing the
PageUp, PageDown, Home, End keys or by using the scrollbar. This allows you
to trace the selected arrow far away.

Grey:
All other arrows

The arrow thickness can be:

Thick:
A backward arrow: Backward arrows usually represent loops. Thick arrows
represent the loops in a clear and notable manner.

Thin:
Forward arrows.

Finally, the arrows can be solid or dotted. The dotted arrows represent
conditional branches where the solid arrows represent unconditional branches.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 29 of 36

Part 19 – Following the Jumps and Calls

I think the best way here is to give a small example. Let’s say we are at the
following Code Location:

.text:0040326F 414 0F 84 9D 00 00 00 jz loc_403312

Double-clicking on “loc_403312” will lead us to the following Code Location at
the line 00403312.

.text:00403312 loc_403312:

.text:00403312

.text:00403312 424 8B C3 mov eax, ebx

.text:00403314 424 81 C4 08 04 00 00 add esp, 408h

.text:0040331A 01C 5F pop edi

.text:0040331B 018 5E pop esi

.text:0040331C 014 5B pop ebx

.text:0040331D 010 C3 retn

Double-clicking on the location at the jump will lead us to the point that the
jump would go.

In the same we can use this for following Calls. Check out the following
example.

.text:00403244 414 8B D7 mov edx, edi

.text:00403246 414 8B C6 mov eax, esi

.text:00403248 414 E8 2B B6 03 00 call sub_43E878

.text:0040324D 414 33 C9 xor ecx, ecx

Let’s say we are at line 403248 and double-click at “sub_43E878”. We will
land at the following Code location at line 43E878.

.text:0043E878 sub_43E878 proc.text:0043E878

.text:0043E878

.text:0043E878 000 53 push ebx

.text:0043E879 004 8B D8 mov ebx, eax

.text:0043E87B 004 56 push esi

Notice: I left out the Comments and Code References for readability.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 30 of 36

Part 20 – Using the Forward/Backward Arrows

The third and fourth icons in the Toolbar are usually two arrows, one pointing to
the left (Backward Arrow) and the other one to the right (Forward Arrow).
These two arrows can be used to move forward and backward in the Code. Take
the two examples from Part 19. If we followed the Jump and now want to go
back, press the “Backward Arrow”. If you want go to return to the location the
Jump led to, press the “Forward Arrow”. Your last moves are stored and may
help you navigating through the Code.

Part 21 – Using Cross-references

I think the best way here is to give an example. Take a look at the following
Code:

.text:004559A9 loc_4559A9: ; CODE XREF: sub_4557A8+A8�j

.text:004559A9 ; sub_4557A8+11C�j

.text:004559A9 ; sub_4557A8+1B7�j

.text:00455949

.text:004559A9 0CC 5F pop edi

.text:004559AA 0C8 5E pop esi

.text:004559AB 0C4 5B pop ebx

Fine, now let’s imagine this location is our badguy-location and we need to
check all jumps that lead to this Code location. When we do a double-click on
“sub_455748+A8j” we will reach the first one. By double-clicking on
“sub_4557A8+11Cj” we reach the second and so on. For this example all Code
locations would be:

.text:00455850 0CC E9 54 01 00 00 jmp loc_4559A9 ; Jump

.text:004558C4 0CC E9 E0 00 00 00 jmp loc_4559A9 ; Jump

.text:0045595F 0CC EB 48 jmp short loc_4559A9 ; Jump

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 31 of 36

Ok, now lets take an example for Code-references leading to a function. Take a
look at the following Code:

.text:0045565C sub_45565C proc near ; CODE XREF: sub_455464+B1�p

.text:0045565C ; sub_455CAC+44�p

.text:0045565C ; sub_457784+110�p

.text:0045565C
some code
.text:004557A5 sub_45565C endp

Lets say this is our Serial-Check function and now we need to check at which
locations it is called. By double-clicking on “sub_455464+B1p” we will reach
the first call. By clicking on “sub_455CAC+44p” the second call and so on. For
this example all our Code location would be:

.text:00455515 0B0 E8 42 01 00 00 call sub_45565C ; Call Procedure

.text:00455CF0 048 E8 67 F9 FF FF call sub_45565C ; Call Procedure

.text:00457894 064 E8 C3 DD FF FF call sub_45565C ; Call Procedure

In fact, it’s the same as in Part 19. We just follow things the other way around.

Part 22 – The Jump Menu

The menu explains itself, but I will give two small examples that are useful.
Also, take note of the Hotkeys of the other menu entries. They may become very
handy.

Jump to Address (Hotkey: ‘g’):

This is very simple to understand. Just enter the address you want to go to and
press “OK”. You also have a history of the last addresses you jumped to.

e.g. 0040BFB2

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 32 of 36

Jump to entry point (Hotkey: ‘CTRL-E’):

Just select the one you wish from the list and press “OK”. The entrypoint “start”
is the beginning of the program. That might be very useful if you are looking for
Nag-Screens displayed at the program start.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 33 of 36

Chapter 5 – Making the Code more readable

Part 23 – Adding Comments

It’s very useful to comment the code you already worked through and the parts
you understood. Otherwise you could step over this code section again and again
and loose a lot of time that could be better spent elsewhere. Comments can be
added for every Code line. There are 3 possible ways to enter a comment for a
code line.

1. Using the Toolbar, there is an icon displaying an “:”
2. Placing your cursor at the end of the code line, pressing the right mouse

key and selecting “Enter Comment” at the upcoming menu.
3. Using the Hotkey : “:”

Here you can enter one or several lines for commenting the Code line.
Pressing “OK” will add your comment to the Main Window.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 34 of 36

You are also able to add “repeatable comments”. They can be accessed by the
following 3 ways.

1. Using the Toolbar there is an icon displaying an “;”
2. Placing your cursor at the end of the code line, pressing the right mouse

key and selecting “Enter repeatable Comment” at the upcoming menu.
3. Using the Hotkey : “;”

I suggest you try it out yourself. But they are only useful in some cases.

Part 24 – Adding Lines

You are able to add Lines with comments between the Code. Here you have 2
possibilities:

1. Creating a Line before your current Code line (Enter additional anterior lines)
2. Creating a Line after your current Coder line (Enter additional posterior lines)

These options can be reached in the following ways:

1. Using the Hotkeys: “INS” or “Shift+INS”
2. Using the 2 Toolbar Icons after the “:” and “;” Icons

The Window for entering your comment lines would look like the following.
Depending on which of the two you selected, it will say either “anterior” or
“posterior”.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 35 of 36

Part 25 – Renaming Functions, Locations

At first you might think Renaming is useless. But it’s very helpful once you find
out which functions does what or that this location is representing a loop or this
variable is used for storing your Serial-Number by just giving some example. It
also helps you in reversing your target more effectively.

Renaming Functions:

Move your cursor on the header of your function. Then right-click with your
mouse and select “Rename” in the upcoming menu. A window like the
following should pop up:

After entering a new name press “OK” and the function is renamed. Now, every
representation of the old name is replaced with your new name.

e.g. call sub_40BFFC to call SerialCheck.

Notice: When you build an NMS file with the Ida2Softice Plugin and you
renamed a function this function is displayed in Softice later with your new
name.

Copyright 2003 by |nAbOo| - Don`t make this tutorial public and don`t give it away !!!

Page 36 of 36

Renaming Locations:

Place your cursor on the name of the location. Press the right mouse key and
choose “Rename”. There will be a window like the following:

Enter a new name for this location and press “OK”. Every representation of the
old name is replaced with your new name.

e.g. jnz loc_40C0B3 to jnz myname

You can ‘Rename’ a lot of things in IDA, not just the two examples I mentioned
above, so make sure to try them out. The renaming option is very helpful in
making your code more readable.

